In [4]: import sklearn.preprocessing In [5]: X=sklearn.preprocessing.MinMaxScaler() In [7]: X.fit_transform([1.,2.,3.,4.]) Out[7]: array([ 0. , 0.33333333, 0.66666667, 1. ]) In [10]: X.scale_ Out[10]: 0.33333333333333331 In [14]: X.min_ Out[14]: -0.33333333333333331 In [17]: 4.*X.scale_+X.min_ # from non-scaled value to scaled value, a.k.a., transform Out[17]: 1.0 In [19]: (1-X.min_)/X.scale_ # from scaled value back to scaled_value, a.k.a., inverse_transform Out[19]: 4.0
References:
[1] http://stackoverflow.com/questions/24724717/scikit-learn-minmaxscaler-produces-slightly-different-results-than-a-numpy-imple
No comments:
Post a Comment